Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The incentre of the triangle with vertices $\mathrm{A}(1, \sqrt{3}), \mathrm{B}(0,0)$
and $\mathrm{C}(2,0)$ is
MathematicsStraight LinesJEE Main
Options:
  • A $\left(1, \frac{\sqrt{3}}{2}\right)$
  • B $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
  • C $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
  • D $\left(1, \frac{1}{\sqrt{3}}\right)$
Solution:
1941 Upvotes Verified Answer
The correct answer is: $\left(1, \frac{1}{\sqrt{3}}\right)$
Vertices of triangle, $\mathrm{A}(1, \sqrt{3}), \mathrm{B}(0,0), \mathrm{C}(2,0)$
observe the figure, $\mathrm{BD}=1, \mathrm{DC}=1, \mathrm{AD}=\sqrt{3}$


So, $A B=2 . A C=2$ (Using Pythagoras theorem) So, given triangle is equilateral triangle In equilateral triangle, Incentre is controid only. $\therefore$ Incentre $=\left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right)$
$=\left(\frac{3}{3}, \frac{\sqrt{3}}{3}\right)$
$=\left(1, \frac{1}{\sqrt{3}}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.