Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The integrating factor of the linear directional equation $\frac{d y}{d x}+P(x) y=Q(x)$ is a solution of the differential equation
MathematicsDifferential EquationsAP EAMCETAP EAMCET 2022 (05 Jul Shift 2)
Options:
  • A $\frac{d y}{d x}-P(x) y=0$
  • B $\frac{d y}{d x}+P(x) y=0$
  • C $\frac{d y}{d x}-\frac{y}{x}=P(x)$
  • D $\frac{d y}{d x}+\frac{x}{y}=P(x)$
Solution:
1772 Upvotes Verified Answer
The correct answer is: $\frac{d y}{d x}-P(x) y=0$
$\frac{d y}{d x}+P(x) y=Q(x)$
$\begin{aligned} & \text { Integrating }=e^{\int P(x) d x} \\ & \text { Factor }\end{aligned}$
(A) If $y=e^{\int p(x) d x}$
checking:
$\frac{d y}{d x}-P(x) y=0$
$\frac{d y}{d x}=e^{\int {p}(x) d x}$ $P(x)=y P(x)$
$\Rightarrow P(x) y-y P(x)=0$
$\Rightarrow$ Hence found
$\Rightarrow$ If of $\quad \frac{d y}{d x}+P(x) y=Q(x)$ i.e., $e^{\int p(x) d x}$ is the solution of (A)
ie;,$\frac{d y}{d x}-P(x) y=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.