Search any question & find its solution
Question:
Answered & Verified by Expert
The interval in which the function $2 \mathrm{x}^{3}+15$ increases less rapidly than the function $9 x^{2}-12 x,$ is $-$
Options:
Solution:
2222 Upvotes
Verified Answer
The correct answer is:
(1,2)
Let $f(x)=2 x^{3}+15$ and $g(x)=9 x^{2}-12 x$ then $\mathrm{f}^{\prime}(\mathrm{x})=6 \mathrm{x}^{2} \forall \mathrm{x} \in \mathrm{R}$
$\therefore \mathrm{f}(\mathrm{x})$ is increasing function $\forall \mathrm{x} \in \mathrm{R}$
$$
\text { Also, } g^{\prime}(x)>0 \Rightarrow 18 x-12>0 \Rightarrow x>\frac{2}{3}
$$
Thus, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ both increases for $\mathrm{x}>\frac{2}{3}$
$$
\text { Let } F(x)=f(x)-g(x), F^{\prime}(x)<0
$$
$(\because \mathrm{f}(\mathrm{x})$ increases less rapidly than the function $\mathrm{g}(\mathrm{x}))$
$$
\Rightarrow 6 \mathrm{x}^{2}-18 \mathrm{x}+12<0 \Rightarrow 1<\mathrm{x}<2
$$
$\therefore \mathrm{f}(\mathrm{x})$ is increasing function $\forall \mathrm{x} \in \mathrm{R}$
$$
\text { Also, } g^{\prime}(x)>0 \Rightarrow 18 x-12>0 \Rightarrow x>\frac{2}{3}
$$
Thus, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ both increases for $\mathrm{x}>\frac{2}{3}$
$$
\text { Let } F(x)=f(x)-g(x), F^{\prime}(x)<0
$$
$(\because \mathrm{f}(\mathrm{x})$ increases less rapidly than the function $\mathrm{g}(\mathrm{x}))$
$$
\Rightarrow 6 \mathrm{x}^{2}-18 \mathrm{x}+12<0 \Rightarrow 1<\mathrm{x}<2
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.