Search any question & find its solution
Question:
Answered & Verified by Expert
The inverse of the matrix \( A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right] \) is
Options:
Solution:
2234 Upvotes
Verified Answer
The correct answer is:
\( \frac{1}{24}\left[\begin{array}{lll}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right] \)
Given that \( A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right] \)
Now \( A^{-1}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right] \)
If \( A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right] \), then \( A^{-1}=\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right] \)
When \( a \neq 0, b \neq 0, c \neq 0 \)
Now \( A^{-1}=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 4\end{array}\right] \)
If \( A=\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right] \), then \( A^{-1}=\left[\begin{array}{ccc}1 / a & 0 & 0 \\ 0 & 1 / b & 0 \\ 0 & 0 & 1 / c\end{array}\right] \)
When \( a \neq 0, b \neq 0, c \neq 0 \)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.