Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The ionization constant of acetic acid is \(1.74 \times 10^{-5}\). Calculate the degree of dissociation of acetic acid in its 0. 05 \(\mathrm{M}\) solution. Calculate the concentration of acetate ion in the solution and its \(\mathrm{pH}\).
ChemistryEquilibrium
Solution:
1297 Upvotes Verified Answer
\(\mathrm{CH}_3 \mathrm{COOH} \rightleftharpoons \mathrm{CH}_3 \mathrm{COO}^{-}+\mathrm{H}^{+}\)
\(\begin{aligned}
&\text { As }\left[\mathrm{CH}_3 \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right] \\
&\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_3 \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_3 \mathrm{COOH}^2\right]}=\frac{\left[\mathrm{H}^{+}\right]^2}{\left[\mathrm{CH}_3 \mathrm{COOH}\right]} \\
&\text { or } \quad\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_3 \mathrm{COOH}\right]} \\
&\quad=\sqrt{\left(1.74 \times 10^{-5}\right)\left(5 \times 10^{-2}\right)} \\
&\quad=9.33 \times 10^{-4} \mathrm{M} \\
&{\left[\mathrm{CH}_3 \mathrm{COO}^{-}\right]=\left[\mathrm{H}^{+}\right]=9.33 \times 10^{-4} \mathrm{M}} \\
&\mathrm{pH}=-\log \left(9.33 \times 10^{-4}\right)=4-0.9699=4-0.97=3.03
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.