Search any question & find its solution
Question:
Answered & Verified by Expert
The $\lim _{x \rightarrow \infty}\left(\frac{3 x-1}{3 x+1}\right)^{4 x}$ equals
Options:
Solution:
2390 Upvotes
Verified Answer
The correct answer is:
$\mathrm{e}^{-8 / 3}$
$\lim _{x \rightarrow \infty}\left(\frac{3 x-1}{3 x+1}\right)^{4 x}=1^{\infty}=e^{L}=e^{-\frac{8}{3}}$
$L=\lim _{x \rightarrow \infty} 4 x\left(\frac{3 x-1}{3 x+1}-1\right)=\lim _{x \rightarrow \infty} 4 x\left(\frac{-2}{3 x+1}\right)=\frac{-8}{3}$
$L=\lim _{x \rightarrow \infty} 4 x\left(\frac{3 x-1}{3 x+1}-1\right)=\lim _{x \rightarrow \infty} 4 x\left(\frac{-2}{3 x+1}\right)=\frac{-8}{3}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.