Search any question & find its solution
Question:
Answered & Verified by Expert
The line $\mathrm{y}=0$ divides the line joining the points $(3,-5)$ and $(-4,7)$ in the ratio:
Options:
Solution:
2916 Upvotes
Verified Answer
The correct answer is:
$5: 7$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be the point of division that divides the line joining $(3,-5)$ and $(-4,7)$ in the ratio of $\mathrm{k}: 1$
Now, $\mathrm{y}=\frac{7 \mathrm{k}-5}{\mathrm{k}+1}$ ...(i)
Since, P lies on $\mathrm{y}=0$ or $\mathrm{x}$ -axis then, from eq. (i) $0=\frac{7 \mathrm{k}-5}{\mathrm{k}+1} \Rightarrow 7 \mathrm{k}=5 \Rightarrow \mathrm{k}=\frac{5}{7}$
Now, $\mathrm{y}=\frac{7 \mathrm{k}-5}{\mathrm{k}+1}$ ...(i)
Since, P lies on $\mathrm{y}=0$ or $\mathrm{x}$ -axis then, from eq. (i) $0=\frac{7 \mathrm{k}-5}{\mathrm{k}+1} \Rightarrow 7 \mathrm{k}=5 \Rightarrow \mathrm{k}=\frac{5}{7}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.