Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The longest wavelength associated with Paschen series is : (Given $\mathrm{R}_{\mathrm{H}}=1.097 \times 10^7 \mathrm{SI}$ unit)
PhysicsAtomic PhysicsJEE MainJEE Main 2024 (06 Apr Shift 2)
Options:
  • A $3.646 \times 10^{-6} \mathrm{~m}$
  • B $1.876 \times 10^{-6} \mathrm{~m}$
  • C $2.973 \times 10^{-6} \mathrm{~m}$
  • D $1.094 \times 10^{-6} \mathrm{~m}$
Solution:
2323 Upvotes Verified Answer
The correct answer is: $1.876 \times 10^{-6} \mathrm{~m}$
For longest wavelength in Paschen's series:
$\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right]$
For longest $\mathrm{n}_1=3$
$\mathrm{n}_2=4$
$\begin{aligned} & \frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{(3)^2}-\frac{1}{(4)^2}\right] \\ & \frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{9}-\frac{1}{16}\right] \\ & \frac{1}{\lambda}=\mathrm{R}\left[\frac{16-9}{16 \times 9}\right] \\ & \Rightarrow \lambda=\frac{16 \times 9}{7 \mathrm{R}}=\frac{16 \times 9}{7 \times 1.097 \times 10^7} \\ & \lambda=1.876 \times 10^{-6} \mathrm{~m}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.