Search any question & find its solution
Question:
Answered & Verified by Expert
The magnetic field due to a current carrying circular loop of radius $3 \mathrm{~cm}$ at a point on the axis at a distance of $4 \mathrm{~cm}$ from the centre is $54 \mu \mathrm{T}$. What will be its value at the centre of the Loop?
Options:
Solution:
2638 Upvotes
Verified Answer
The correct answer is:
$250 \mu \mathrm{T}$
$250 \mu \mathrm{T}$
Using formula $B=\frac{\mu_0^{\text {II }}}{2\left(R^2+X^2\right)^{3 / 2}}$, we get
$$
54=\frac{\mu_0 i(3)^2}{2\left[(3)^2+(4)^2\right]^{3 / 2}}
$$
At the centre of the coil, $X=0$ and $B=\frac{\mu_0 i}{2(3)}$
Using equation (i)
$$
B=\frac{54 \times 5^3}{(3)^2 \times 3} \Rightarrow B=250 \mu \mathrm{T} \text {. }
$$
$$
54=\frac{\mu_0 i(3)^2}{2\left[(3)^2+(4)^2\right]^{3 / 2}}
$$
At the centre of the coil, $X=0$ and $B=\frac{\mu_0 i}{2(3)}$
Using equation (i)
$$
B=\frac{54 \times 5^3}{(3)^2 \times 3} \Rightarrow B=250 \mu \mathrm{T} \text {. }
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.