Search any question & find its solution
Question:
Answered & Verified by Expert
The magnetic needle of a vibration magnetometer makes 12 oscillations per minute in the horizontal component of earth's magnetic field. When an external short bar magnet is placed at some distance along the axis of the needle in the same line, it makes 15 oscillations per minute. If the poles of the bar magnet are interchanged, the number of oscillations it makes per minute is
Options:
Solution:
1950 Upvotes
Verified Answer
The correct answer is:
$\sqrt{63}$
$\begin{array}{ll}
\text {Ist case } & n=\frac{1}{2 \pi} \sqrt{\frac{M H}{I}} \\
\Rightarrow & n \propto \sqrt{H} \Rightarrow \frac{n_1}{n_2}=\sqrt{\frac{H}{H+H_1}} \\
\Rightarrow \quad & \frac{12}{15}=\sqrt{\frac{H}{H+H_1}} \Rightarrow H_1=\frac{9}{16} H
\end{array}$
IInd case
$\begin{aligned}
\frac{n_2}{n_3} & =\sqrt{\frac{H+H_1}{H-H_1}} \Rightarrow \frac{15}{n_3}=\sqrt{\frac{H+\frac{9}{16} H}{B-\frac{9}{16} H}} \\
\because \quad n_3 & =\sqrt{63}
\end{aligned}$
\text {Ist case } & n=\frac{1}{2 \pi} \sqrt{\frac{M H}{I}} \\
\Rightarrow & n \propto \sqrt{H} \Rightarrow \frac{n_1}{n_2}=\sqrt{\frac{H}{H+H_1}} \\
\Rightarrow \quad & \frac{12}{15}=\sqrt{\frac{H}{H+H_1}} \Rightarrow H_1=\frac{9}{16} H
\end{array}$
IInd case
$\begin{aligned}
\frac{n_2}{n_3} & =\sqrt{\frac{H+H_1}{H-H_1}} \Rightarrow \frac{15}{n_3}=\sqrt{\frac{H+\frac{9}{16} H}{B-\frac{9}{16} H}} \\
\because \quad n_3 & =\sqrt{63}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.