Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The magnitude of the scalar $\mathrm{p}$ for which the vector
$\mathrm{p}(-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})$ is of unit length is :
MathematicsVector AlgebraNDANDA 2012 (Phase 2)
Options:
  • A $1 / 8$
  • B $1 / 64$
  • C $\sqrt{182}$
  • D $\frac{1}{\sqrt{182}}$
Solution:
2136 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{182}}$
Let $\overrightarrow{\mathrm{a}}=\mathrm{p}(-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})$
$=(-3 p) \hat{i}+(-2 p) \hat{j}+(13 p) \hat{k}$
It is given that a is of unit length
$\therefore|\overrightarrow{\mathrm{a}}|=1 \Rightarrow|\overrightarrow{\mathrm{a}}|^{2}=1$
$\Rightarrow \quad(-3 \mathrm{p}))(-3 \mathrm{p})+(-2 \mathrm{p})(-2 \mathrm{p})+(13 \mathrm{p})(13 \mathrm{p})=1$
$\quad 9 \mathrm{p}^{2}+4 \mathrm{p}^{2}+169 \mathrm{p}^{2}=1$
$\Rightarrow \quad \mathrm{p}^{2}=\frac{1}{182} \Rightarrow \mathrm{p}=\frac{1}{\sqrt{182}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.