Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The magnitude of the sum of the two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ is equal to the magnitude of
the difference of two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$. The angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ is
PhysicsMathematics in PhysicsMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $30^{\circ}$
  • B $45^{\circ}$
  • C $90^{\circ}$
  • D $180^{\circ}$
Solution:
1360 Upvotes Verified Answer
The correct answer is: $90^{\circ}$
Let the two vectors be $\vec{A}$ and $\vec{B}$ with magnitudes $A$ and $B$ respectively. Then magnitude of their sum is given by:
$|\vec{A}+\vec{B}|=\sqrt{A^{2}+B^{2}+2 A B \cos \theta} \rightarrow(1)(\theta=$ angle between the vectors $)$
Magnitude of their difference is given by:
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \theta} \rightarrow(2)$
As $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
$\Rightarrow \mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \cos \theta=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \theta$
$\Rightarrow 4 \mathrm{AB} \cos \theta=0$ or $\cos \theta=0$
$\Rightarrow \theta=90^{\circ}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.