Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum area of a rectangle that can be formed with a fixed perimeter of 20 units is sq units
MathematicsApplication of DerivativesAP EAMCETAP EAMCET 2021 (25 Aug Shift 1)
Options:
  • A 30
  • B 25
  • C 20
  • D 15
Solution:
1891 Upvotes Verified Answer
The correct answer is: 25
Let the sides of rectangle is $x$ and $y$.
$$
\text { Given, } \begin{aligned}
20 & =2(x+y) \Rightarrow x+y=10 \\
A & =x y=x(10-x)=10 x-x^2 \\
\frac{d A}{d x} & =10-2 x \\
\frac{d A}{d x} & =0 \Rightarrow 10-2 x=0 \\
\Rightarrow \quad x & =5 \Rightarrow \frac{d^2 A}{d x^2}=-2 < 0
\end{aligned}
$$
$\therefore \quad$ Area of rectangle is maximum when $x=y=5$
$\therefore \quad$ Area of rectangle $=(5)^2=25$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.