Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum range of a gun on horizontal terrain is 16 km , if $g=10 \mathrm{~m} / \mathrm{s}^2$. What must be the muzzle velocity of the shell?
PhysicsMotion In Two DimensionsJIPMERJIPMER 2005
Options:
  • A $200 \mathrm{~m} / \mathrm{s}$
  • B $100 \mathrm{~m} / \mathrm{s}$
  • C $400 \mathrm{~m} / \mathrm{s}$
  • D $300 \mathrm{~m} / \mathrm{s}$
Solution:
1398 Upvotes Verified Answer
The correct answer is: $400 \mathrm{~m} / \mathrm{s}$
We know that in projection of the particle, for maximum range, $\theta=45^{\circ}$
Now maximum range
$\begin{aligned} & R=\frac{u^2 \sin 2 \theta}{g}=\frac{u^2 \sin 90^{\circ}}{g} \\ & u=\sqrt{R g} & ...(1) \end{aligned}$
Here : $R_{\max }=16 \mathrm{~km}=16 \times 10^3 \mathrm{~m}$,
$g=10 \mathrm{~m} / \mathrm{s}^2$
Now from eq. (1), we get
$u=\sqrt{16 \times 10^3 \times 10}=400 \mathrm{~m} / \mathrm{s}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.