Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum value of $\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$ in the
interval $\left(0, \frac{\pi}{2}\right)$ is attained at
MathematicsApplication of DerivativesNDANDA 2017 (Phase 1)
Options:
  • A $\frac{\pi}{12}$
  • B $\frac{\pi}{6}$
  • C $\frac{\pi}{3}$
  • D $\frac{\pi}{2}$
Solution:
1443 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{12}$
$\quad \sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right)$
$=\sqrt{2}\left[\frac{1}{\sqrt{2}} \sin \left(x+\frac{\pi}{6}\right)+\frac{1}{\sqrt{2}} \cos \left(x+\frac{\pi}{6}\right)\right]$
$=\sqrt{2}\left[\sin \left(x+\frac{\pi}{6}\right) \cos \frac{\pi}{4}+\cos \left(x+\frac{\pi}{6}\right) \sin \frac{\pi}{4}\right]$
$=\sqrt{2}\left[\sin \left(x+\frac{\pi}{6}+\frac{\pi}{4}\right)\right]$
$[\because \sin (A+B)=\sin A \cos B+\cos A \operatorname{Sin} B]$
$=\sqrt{2}\left[\sin \left(x+\frac{5 \pi}{12}\right)\right]$
Given interval is $\left(0, \frac{\pi}{2}\right)$ For, maximum value $x+\frac{5 \pi}{12}=\frac{\pi}{2}$ $\Rightarrow x=\frac{\pi}{2}-\frac{5 \pi}{12}=\frac{6 \pi-5 \pi}{12}=\frac{\pi}{12}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.