Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The maximum value of the modulus of $e^{z^2}$ on the set $\{z \in C / 0 \leq \operatorname{Re}(z) \leq 1,0 \leq \operatorname{Im}(z) \leq 1\}$ is
MathematicsComplex NumberAP EAMCETAP EAMCET 2018 (24 Apr Shift 1)
Options:
  • A $\frac{2}{e}$
  • B e
  • C $e+1$
  • D $e^2$
Solution:
2676 Upvotes Verified Answer
The correct answer is: e
$\begin{aligned} & \text { Let } z=x+i y 0 \leq x \leq 1,0 \leq y \leq 1 \\ & \Rightarrow \quad e^{z^2}=e^{x^2-y^2+2 i x y} \\ & \Rightarrow \quad e^{z^2}=e^{x^2-y^2} \cdot e^{i(2 x y)} \\ & \Rightarrow \quad\left|e^{z^2}\right|=e^{x^2-y^2} \\ & {\left[\left|e^{i(2 x y)}\right|=1\right]} \\ & 0 \leq x^2 \leq 1,0 \leq y^2 \leq 1 \\ & \Rightarrow \quad 0 \leq x^2 \leq 1 \\ & -1 \leq-y^2 \leq 0 \\ & \Rightarrow \quad-1 \leq x^2-y^2 \leq 1 \\ & \Rightarrow \text { maximum of }\left|e^{z^2}\right|=e \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.