Search any question & find its solution
Question:
Answered & Verified by Expert
The moment of inertia of a thin rod about an axis passing through its mid point and perpendicular to the rod is $2400 \mathrm{~g} \mathrm{~cm}^2$. The length of the 400 g rod is nearly:
Options:
Solution:
1653 Upvotes
Verified Answer
The correct answer is:
8.5 cm
Moment of inertia of rod $=I=\frac{m \ell^2}{12}$
$\begin{aligned} & \Rightarrow \quad 2400=400 \frac{\ell^2}{12} \\ & \Rightarrow \quad 72=\ell^2 \\ & \Rightarrow \quad \ell=\sqrt{72}=8.48 \mathrm{~cm} \simeq 8.5 \mathrm{~cm}\end{aligned}$
$\begin{aligned} & \Rightarrow \quad 2400=400 \frac{\ell^2}{12} \\ & \Rightarrow \quad 72=\ell^2 \\ & \Rightarrow \quad \ell=\sqrt{72}=8.48 \mathrm{~cm} \simeq 8.5 \mathrm{~cm}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.