Search any question & find its solution
Question:
Answered & Verified by Expert
The number of noncongruent integer-sided triangles whose sides belong to the set $\{10,11,12, \ldots ., 22\}$ is-
Options:
Solution:
2632 Upvotes
Verified Answer
The correct answer is:
448
Number of scalene triangles
$\begin{array}{l}
={ }^{13} \mathrm{C}_{3}-3 \\
=283
\end{array}\left\{\begin{array}{l}
10,11,22 \\
10,12,22 \\
10,11,21
\end{array}\right\}$
Number of isosceles triangles
$=\left({ }^{13} \mathrm{C}_{2} \times 2\right)-4 \quad\left\{\begin{array}{l}10,10,22 \\ 11,11,22 \\ =152\end{array}\right.$
Number of equilateral triangles
$={ }^{13} \mathrm{C}_{1}=13$
So total number of triangles $=448$
$\begin{array}{l}
={ }^{13} \mathrm{C}_{3}-3 \\
=283
\end{array}\left\{\begin{array}{l}
10,11,22 \\
10,12,22 \\
10,11,21
\end{array}\right\}$
Number of isosceles triangles
$=\left({ }^{13} \mathrm{C}_{2} \times 2\right)-4 \quad\left\{\begin{array}{l}10,10,22 \\ 11,11,22 \\ =152\end{array}\right.$
Number of equilateral triangles
$={ }^{13} \mathrm{C}_{1}=13$
So total number of triangles $=448$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.