Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The number of ordered pairs $(\mathrm{x}, \mathrm{y})$ for which $\mathrm{A}=$ $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 2 & x \\ y & 1 & 2\end{array}\right)$ is a singular and symmetric matrix is
MathematicsMatricesAP EAMCETAP EAMCET 2023 (19 May Shift 1)
Options:
  • A $1$
  • B $0$
  • C $2$
  • D $3$
Solution:
2438 Upvotes Verified Answer
The correct answer is: $0$
Given $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 2 & x \\ y & 1 & 2\end{array}\right]$

Since $A$ is singular i.e. $|A|=0$
$$
\begin{aligned}
\Rightarrow & \left|\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & x \\
y & 1 & 2
\end{array}\right|=0 \\
\Rightarrow & 1(4-x)-2(4-x y)+1(2-2 y)=0 \\
\Rightarrow & 4-x-8+2 x y+2-2 y=0
\end{aligned}
$$
$\Rightarrow \quad-2-x-2 y+2 x y=0$ ...(i)
$$
\Rightarrow \quad-2-x-2 y+2 x y=0
$$

Since $A$ is symmetric
$$
\begin{aligned}
& \Rightarrow A^T=A \\
& \Rightarrow\left[\begin{array}{lll}
1 & 2 & \mathrm{y} \\
2 & 2 & 1 \\
1 & \mathrm{x} & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & \mathrm{x} \\
\mathrm{y} & 1 & 2
\end{array}\right]
\end{aligned}
$$

Comparing above, we get
$y=1, x=1$ ...(i)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.