Search any question & find its solution
Question:
Answered & Verified by Expert
The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations.
$$
x+y^{2}=x^{2}+y=12
$$ is
Options:
$$
x+y^{2}=x^{2}+y=12
$$ is
Solution:
1117 Upvotes
Verified Answer
The correct answer is:
4
$$
\begin{array}{l}
\mathrm{x}+\mathrm{y}^{2}=\mathrm{x}^{2}+\mathrm{y}=12 \\
\mathrm{x}+\mathrm{y}^{2}=\mathrm{x}^{2}+\mathrm{y} \\
x-y=x^{2}-y^{2} \Rightarrow x=y, \mathrm{x}+\mathrm{y}=1 \\
\text { when } \mathrm{x}=\mathrm{y} \quad \mathrm{x}^{2}+\mathrm{x}=12 \\
\quad \mathrm{x}^{2}+\mathrm{x}-12=0 \\
\quad \mathrm{x}^{2}+4 \mathrm{x}-3 \mathrm{x}-12=0 \\
\quad(\mathrm{x}+4)(\mathrm{x}-3)=0 \\
\quad \mathrm{x}=-4,3 \\
\quad(3,3)(-4,-4) \\
\text { When } \mathrm{y}=1-\mathrm{x} \\
\quad \mathrm{x}+(1-\mathrm{x})^{2}=12 \\
\mathrm{x}^{2}-\mathrm{x}-11=0 \\
\quad x=\frac{1 \pm \sqrt{1+44}}{2}
\end{array}
$$
So four pair.
\begin{array}{l}
\mathrm{x}+\mathrm{y}^{2}=\mathrm{x}^{2}+\mathrm{y}=12 \\
\mathrm{x}+\mathrm{y}^{2}=\mathrm{x}^{2}+\mathrm{y} \\
x-y=x^{2}-y^{2} \Rightarrow x=y, \mathrm{x}+\mathrm{y}=1 \\
\text { when } \mathrm{x}=\mathrm{y} \quad \mathrm{x}^{2}+\mathrm{x}=12 \\
\quad \mathrm{x}^{2}+\mathrm{x}-12=0 \\
\quad \mathrm{x}^{2}+4 \mathrm{x}-3 \mathrm{x}-12=0 \\
\quad(\mathrm{x}+4)(\mathrm{x}-3)=0 \\
\quad \mathrm{x}=-4,3 \\
\quad(3,3)(-4,-4) \\
\text { When } \mathrm{y}=1-\mathrm{x} \\
\quad \mathrm{x}+(1-\mathrm{x})^{2}=12 \\
\mathrm{x}^{2}-\mathrm{x}-11=0 \\
\quad x=\frac{1 \pm \sqrt{1+44}}{2}
\end{array}
$$
So four pair.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.