Search any question & find its solution
Question:
Answered & Verified by Expert
The numer ically greatest term in the expansion of $(3-5 x)^{11}$ when $x=\frac{1}{5}$, is
Options:
Solution:
1306 Upvotes
Verified Answer
The correct answer is:
$55 \times 3^{9}$
$\begin{aligned}(3-5 x)^{11} &=3^{11}\left(1-\frac{5 x}{3}\right)^{11} \\ &=3^{11}\left(1-\frac{5}{3} \cdot \frac{1}{5}\right)^{11} \quad\left\{\because x=\frac{1}{5}\right\} \\ &=3^{11}\left(1-\frac{1}{3}\right)^{11} \end{aligned}$ Now, $r=\frac{|x|(n+1)}{|x|+1}=\frac{\left|-\frac{1}{3}\right|(11+1)}{\left|-\frac{1}{3}\right|+1}=\frac{4}{\frac{4}{3}}$ $\begin{aligned} \Rightarrow r=3
\end{aligned}$
Therefore, $3 \mathrm{rd}\left(T_{3}\right)$ and $(3+1)=4$ th $\left(T_{4}\right)$
terms are numerically greatest in the expansion of $(3-5 x)^{11}$
So, greatest term $=T_{3}$
$$
\begin{array}{l}
=3^{11}\left|{ }^{11} C_{2}(1)^{9}\left(-\frac{1}{3}\right)^{2}\right|=3^{11}\left|\frac{11 \times 10}{1.2 .9}\right| \\
=55 \times 3^{9}
\end{array}
$$
and $T_{4}=3^{11}\left|{ }^{11} C_{3}(1)^{8}\left(-\frac{1}{3}\right)^{3}\right|$
$$
\begin{array}{c}
=3^{11}\left|\frac{11 \times 10 \times 9}{1.2 .3} \cdot\left(-\frac{1}{27}\right)\right|=55 \times 3^{9} \\
\therefore \text { Greatest term (numerically) } \\
=T_{3}=T_{4}=55 \times 3^{9}
\end{array}
$$
\end{aligned}$
Therefore, $3 \mathrm{rd}\left(T_{3}\right)$ and $(3+1)=4$ th $\left(T_{4}\right)$
terms are numerically greatest in the expansion of $(3-5 x)^{11}$
So, greatest term $=T_{3}$
$$
\begin{array}{l}
=3^{11}\left|{ }^{11} C_{2}(1)^{9}\left(-\frac{1}{3}\right)^{2}\right|=3^{11}\left|\frac{11 \times 10}{1.2 .9}\right| \\
=55 \times 3^{9}
\end{array}
$$
and $T_{4}=3^{11}\left|{ }^{11} C_{3}(1)^{8}\left(-\frac{1}{3}\right)^{3}\right|$
$$
\begin{array}{c}
=3^{11}\left|\frac{11 \times 10 \times 9}{1.2 .3} \cdot\left(-\frac{1}{27}\right)\right|=55 \times 3^{9} \\
\therefore \text { Greatest term (numerically) } \\
=T_{3}=T_{4}=55 \times 3^{9}
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.