Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The parabolas $\mathrm{y}^2=4 \mathrm{x}$ and $\mathrm{x}^2=4 \mathrm{y}$ divide the square region bounded by the lines $\mathrm{x}=$ $4, y=4$ and the coordinate axes. If $S_1, S_2, S_3$ are respectively the areas of these parts numbered from top to bottom; then $\mathrm{S}_1: \mathrm{S}_2: \mathrm{S}_3$ is
MathematicsArea Under CurvesJEE MainJEE Main 2005
Options:
  • A
    $1: 2: 1$
  • B
    $1: 2: 3$
  • C
    $2: 1: 2$
  • D
    $1: 1: 1$
Solution:
1147 Upvotes Verified Answer
The correct answer is:
$1: 1: 1$
$\mathrm{y}^2=4 \mathrm{x}$ and $\mathrm{x}^2=4 \mathrm{y}$ are symmetric about line $\mathrm{y}=\mathrm{x}$
$\Rightarrow$ area bounded between $y^2=4 x$ and $y=x$ is $\int_0^4(2 \sqrt{x}-x) d x=\frac{8}{3}$
$\Rightarrow \mathrm{A}_{\mathrm{s}_2}=\frac{16}{3}$ and $\mathrm{A}_{\mathrm{s}_1}=\mathrm{A}_{\mathrm{s}_3}=\frac{16}{3}$
$\Rightarrow A_{s_1}: A_{s_2}: A_{s_3}:: 1: 1: 1$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.