Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The parametric equations of a line passing through the points $\mathrm{A}$ $(3,4,-7)$ and $B(1,-1,6)$ are
MathematicsThree Dimensional GeometryMHT CETMHT CET 2021 (20 Sep Shift 1)
Options:
  • A $\mathrm{x}=3+\lambda, \mathrm{y}=-1+4 \lambda, \mathrm{z}=-7+6 \lambda$
  • B $\mathrm{x}=-2+3 \lambda, \mathrm{y}=-5+4 \lambda, \mathrm{z}=13-7 \lambda$
  • C $\mathrm{x}=3-2 \lambda, \mathrm{y}=4-5 \lambda, \mathrm{z}=-7+13 \lambda$
  • D $\mathrm{x}=3-2 \lambda, \mathrm{y}=4-5 \lambda, \mathrm{z}=-7+13 \lambda$
Solution:
1109 Upvotes Verified Answer
The correct answer is: $\mathrm{x}=3-2 \lambda, \mathrm{y}=4-5 \lambda, \mathrm{z}=-7+13 \lambda$
Equation of required line is
$$
\begin{aligned}
& \frac{x-3}{1-3}=\frac{y-4}{-1-4}=\frac{z+7}{6+7}=\lambda \ldots \text { (Say) } \\
& \therefore \frac{x-3}{-2}=\frac{y-4}{-5}=\frac{z+7}{13}=\lambda \\
& \therefore x=-2 \lambda+3, y=-5 \lambda+4, z=13 \lambda-7
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.