Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The particular solution of the differential equation y1+log xdxdy-xlog x=0  when

y(
e
)
=
e
2




is
MathematicsDifferential EquationsMHT CETMHT CET 2016
Options:
  • A y=exlogx
  • B ey=x logx
  • C xy=elogx
  • D ylogx=ex
Solution:
2730 Upvotes Verified Answer
The correct answer is: y=exlogx
y1+logxdxdy-xlog x=0
  1+log xxlog xdx=dyy
Integrating on both side
  1+log xxlog xdx=dyy
log xlog x=log y+log C
 log xlog x=log y. c
   x log x=y.c ...... (i)
As x=e, y=e2
  e=e2 .c
  c=1e
Putting c=1e in equation (i) we get
x log x=ye
  y=exlog x

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.