Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The $\mathrm{pH}$ of the solution obtained by mixing $100 \mathrm{ml}$ of a solution of $\mathrm{pH}=3$ with $400 \mathrm{~mL}$ of a solution of $\mathrm{pH}=4$ is
ChemistryIonic EquilibriumKCETKCET 2012
Options:
  • A $7-\log 2.8$
  • B $4-\log 2.8$
  • C $5-\log 2.8$
  • D $3-\log 2.8$
Solution:
2786 Upvotes Verified Answer
The correct answer is: $4-\log 2.8$
For solution $\mathrm{I}, \mathrm{pH}=3$
$$
\Rightarrow \quad\left[\mathrm{H}^{+}\right]=10^{-3}
$$
$\Rightarrow$ Concentration of solution $\mathrm{M}_{1}=10^{-3} \mathrm{M}$
$$
\mathrm{V}_{1}=100 \mathrm{~mL}
$$
For solution II, pH = 4
$\Rightarrow \quad\left[\mathrm{H}^{+}\right]=10^{-4}$ $\Rightarrow$ Concentration of solution, $\mathrm{M}_{2}=10^{-4} \mathrm{M}$ $\mathrm{V}_{2}=400 \mathrm{~mL}$
Concentration of resulting solution
$$
\begin{aligned}
\mathrm{M} &=\frac{\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}} \\
&=\frac{10^{-3} \times 100+10^{-4} \times 400}{100+400} \\
&=\frac{0.14}{500} \\
\mathrm{M} &=0.00028=2.8 \times 10^{-4} \\
{\left[\quad\left[\mathrm{H}^{+}\right]\right.} &=2.8 \times 10^{-4} \\
\therefore \mathrm{pH} \text { of resulting solution } \\
&=-\log \left[\mathrm{H}^{+}\right] \\
&=-\log \left(2.8 \times 10^{-4}\right) \\
&=-\log 2.8-\log 10^{-4} \\
&=4-\log 2.8
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.