Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The point of intersection of the lines $\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}, \frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}$ is
MathematicsThree Dimensional GeometryJEE Main
Options:
  • A $21, \frac{5}{3}, \frac{10}{3}$
  • B $(2,10,4)$
  • C $(-3,3,6)$
  • D $(5,7,-2)$
Solution:
2337 Upvotes Verified Answer
The correct answer is: $21, \frac{5}{3}, \frac{10}{3}$
Given lines are,
$\begin{aligned}
& \qquad \frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}=r_1, \text { (say) } \\
& \text { and } \frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}=r_2, \text { (say) } \\
& \therefore x=3 r_1+5=-36 r_2-3, y=-r_1+7=3+2 r_2 \text { and } z=r_1-2=4 r_2+6 \\
& \text { On solving, we get } x=21, y=\frac{5}{3}, z=\frac{10}{3} .
\end{aligned}$

On solving, we get
Trick: Check through options.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.