Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The point on the curve $y^{2}=x$, the tangent at which makes an angle $45^{\circ}$ with $X$-axis is
MathematicsApplication of DerivativesKCETKCET 2007
Options:
  • A $\left(\frac{1}{4}, \frac{1}{2}\right)$
  • B $\left(\frac{1}{2}, \frac{1}{4}\right)$
  • C $\left(\frac{1}{2}, \frac{-1}{2}\right)$
  • D $\left(\frac{1}{2}, \frac{1}{2}\right)$
Solution:
1991 Upvotes Verified Answer
The correct answer is: $\left(\frac{1}{4}, \frac{1}{2}\right)$
Given,
$$
y^{2}=x
$$
$$
\begin{aligned}
&\Rightarrow \quad 2 y \frac{d y}{d x}=1 \\
&\Rightarrow \quad \frac{d y}{d x}=\frac{1}{2 y}=\text { Slope }
\end{aligned}
$$
Also given, $\quad \theta=45^{\circ}$
$\therefore$ Slope $\tan 45^{\circ}=1 \Rightarrow \frac{1}{2 y}+1$
$\Rightarrow \quad y=\frac{1}{2}$
From Eq. (i), if $y=\frac{1}{2}$, then $x=\frac{1}{4}$
$\therefore$ Required point is $\left(\frac{1}{4}, \frac{1}{2}\right)$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.