Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The points representing the complex number z for which arg $\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}$ lie on
MathematicsComplex NumberWBJEEWBJEE 2012
Options:
  • A a circle
  • B a straight line
  • C an ellipse
  • D a parabola
Solution:
2348 Upvotes Verified Answer
The correct answer is: a circle
Let $z=x+i y$ $\therefore \quad \frac{z-2}{z+2}=\frac{x+iy-2}{x+i y+2}$
$=\frac{(x-2)+i y}{(x+2)+6 y} \times \frac{(x+2)-i y}{(x+2)-i y}$
$=\frac{(x-2)(x+2)+i y(x+2)-i y(x-2)-i^{2} y^{2}}{(x+2)^{2}-(i y)^{2}}$
$=\frac{x^{2}-4+i x y+2 i y-i x y+2 i y+y^{2}}{(x+2)^{2}+y^{2}}$
$x^{2}+y^{2}-4-\frac{4}{\sqrt{3}} y=0,$ which represents a
circle.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.