Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The points whose position vectors are $2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, 3 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$ and $4 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ are the vertices of
MathematicsVector AlgebraAP EAMCETAP EAMCET 2013
Options:
  • A an isosceles triangle
  • B right angled triangle
  • C equilateral triangle
  • D right angled isosceles triangle
Solution:
2795 Upvotes Verified Answer
The correct answer is: equilateral triangle
$$
\begin{aligned}
& \text { Let } \mathbf{a}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}=\mathrm{OA} \\
& \mathbf{b}=3 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}=\mathrm{OB} \\
& \text { and } \mathbf{c}=4 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}=\mathrm{OC} \\
& A B=O B-O A=i+j-2 k \\
& B C=O C-O B=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \\
& \text { and } \quad C A=O A-O C=-2 i+j+k \\
& \text { Now, } \quad A B=\sqrt{1+1+4}=\sqrt{6} \\
& \mathrm{BC}=\sqrt{1+4+1}=\sqrt{6} \\
& \text { and } \mathrm{CA}=\sqrt{4+1+1}=\sqrt{6} \\
&
\end{aligned}
$$
Since, the length of all three sides are equal.
So, the triangle is an equilateral triangle.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.