Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The position of a projectile launched from the origin at $t=0$ is given by $\vec{r}=(40 \hat{i}+50 \hat{j}) \mathrm{m}$ at $t=$ $2 \mathrm{~s}$. If the projectile was launched at an angle $\theta$ from the horizontal, then $\theta$ is $\left(\right.$ take $\left.g=10 \mathrm{~ms}^{-2}\right)$\
PhysicsMotion In Two DimensionsBITSATBITSAT 2015
Options:
  • A $\tan ^{-1} \frac{2}{3}$
  • B $\tan ^{-1} \frac{3}{2}$
  • C $\tan ^{-1} \frac{7}{4}$
  • D $\tan ^{-1} \frac{4}{5}$
Solution:
1840 Upvotes Verified Answer
The correct answer is: $\tan ^{-1} \frac{7}{4}$
From question, Horizontal velocity (initial),

$$

u_{x}=\frac{40}{2}=20 \mathrm{~m} / \mathrm{s}

$$

Vertical velocity (initial), $50=u_{y} t+\frac{1}{2} g t^{2}$

$$

\begin{array}{l}

\Rightarrow u_{y} \times 2+\frac{1}{2}(-10) \times 4 \\

\text { or, } \quad 50=2 u_{y}-20

\end{array}

$$

or, $u_{y}=\frac{70}{2}=35 \mathrm{~m} / \mathrm{s}$

$$

\begin{array}{l}

\therefore \quad \tan \theta=\frac{u_{y}}{u_{x}}=\frac{35}{20}=\frac{7}{4} \\

\Rightarrow \quad \text { Angle } \theta=\tan ^{-1} \frac{7}{4}

\end{array}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.