Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The position vector of $\mathrm{A}$ and $\mathrm{B}$ are $2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
The length of the internal bisector of $\angle \mathrm{BOA}$ of triangle $\mathrm{AOB}$ is
MathematicsVector AlgebraVITEEEVITEEE 2019
Options:
  • A $\sqrt{\frac{136}{9}}$
  • B $\frac{\sqrt{136}}{9}$
  • C $\frac{20}{3}$
  • D $\sqrt{\frac{217}{9}}$
Solution:
1131 Upvotes Verified Answer
The correct answer is: $\sqrt{\frac{136}{9}}$
We have, $\mathrm{OA}=|2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}|=3 ; \mathrm{OB}=|2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}|=6$ Since the internal bisector divides opposite side in the


ratio of adjacent sides
$$
\therefore \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{3}{6}=\frac{1}{2}
$$
where $\mathrm{OC}$ is the bisector of $\angle \mathrm{BOA}$.
$\therefore$ Position vector of $C$ is
$$
\begin{array}{l}
\frac{2(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+(2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})}{2+1}=2 \hat{\mathrm{i}}+\frac{8}{3} \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \\
\therefore \mathrm{OC}=\left|2 \hat{\mathrm{i}}+\frac{8}{3} \hat{\mathrm{j}}+2 \hat{\mathrm{k}}\right|=\sqrt{\frac{136}{9}}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.