Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The power of a thin convex lens $\left(\mathrm{a}_{\mathrm{g}}=1.5\right)$ is $5.0 \mathrm{D} .$ When it is placed in a liquid of refractive index $_{a} n_{b}$, then it behaves as a concave lens of focal length $100 \mathrm{~cm}$. The refractive index of the liquid $\mathrm{a}_{l}$ will be
PhysicsElectromagnetic WavesVITEEEVITEEE 2010
Options:
  • A $5 \sqrt{3}$
  • B $4 / 3$
  • C $\sqrt{3}$
  • D $5 / 4$
Solution:
1545 Upvotes Verified Answer
The correct answer is: $5 \sqrt{3}$
By using lens maker's formula,
$$
\begin{array}{l}
\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\Rightarrow 5=(1.5-1)\left(\frac{2}{R}\right)...(i)
\end{array}
$$
If a lens of refractive index $\mu_{g}$ is immersed in a liquid of refractive index $\mu_{1}$, then its focal length in liquid
$$
\begin{array}{l}
\frac{1}{f_{l}}=\left(_{\ell} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
\Rightarrow-1=\left(\frac{1.5}{n}-1\right)\left(\frac{2}{R}\right) ...(ii)\\
\text { Dividing, (i) by (ii) }-5=\frac{0.5 n}{1.5-n} \\
\Rightarrow-7.5+5 n=0.5 n \Rightarrow-7.5=-4.5 n \\
\Rightarrow n=\frac{75}{45}=\frac{5}{3}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.