Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The radius of the circle $r=12 \cos \theta+5 \sin \theta$ is
MathematicsCircleTS EAMCETTS EAMCET 2012
Options:
  • A $\frac{5}{12}$
  • B $\frac{17}{2}$
  • C $\frac{15}{2}$
  • D $\frac{13}{2}$
Solution:
1291 Upvotes Verified Answer
The correct answer is: $\frac{13}{2}$
Given equation of circle is
$r=12 \cos \theta+5 \sin \theta$
Put $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$, we get
$\begin{array}{rlrl} & & r & =12 \times \frac{x}{r}+5 \times \frac{y}{r} \\ & \Rightarrow & r^2 & =12 x+5 y \\ \Rightarrow & x^2+y^2 & =12 x+5 y \\ \Rightarrow & x^2+y^2-12 x-5 y & =0\end{array}$
$\therefore$ Centre is $\left(6, \frac{5}{2}\right)$
$\begin{aligned} \therefore \text { Radius of circle } & =\sqrt{(6)^2+\left(\frac{5}{2}\right)^2} \\ & =\sqrt{36+\frac{25}{4}}=\sqrt{\frac{144+25}{4}} \\ & =\sqrt{\frac{169}{4}}=\frac{13}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.