Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The range of values of $x$ for which $f(x)=x^3+6 x^2-36 x+7$ is increasing in
MathematicsApplication of DerivativesMHT CETMHT CET 2023 (09 May Shift 2)
Options:
  • A $(-\infty,-6) \cup(2, \infty)$
  • B $(-6,2)$
  • C $(-\infty,-2) \cup(6, \infty)$
  • D $(-6,2]$
Solution:
2470 Upvotes Verified Answer
The correct answer is: $(-\infty,-6) \cup(2, \infty)$
$\begin{aligned}
\mathrm{f}(x) & =x^3+6 x^2-36 x+7 \\
\mathrm{f}^{\prime}(x) & =3 x^2+12 x-36 \\
& =3\left(x^2+4 x-12\right)
\end{aligned}$
For $\mathrm{f}(x)$ to be increasing,
$\begin{aligned}
& \mathrm{f}^{\prime}(x)>0 \\
& \Rightarrow 3\left(x^2+4 x-12\right)>0 \\
& \Rightarrow x^2+4 x-12>0 \\
& \Rightarrow(x+6)(x-2)>0 \\
& \Rightarrow x \in(-\infty,-6) \cup(2, \infty)
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.