Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The ratio between RMS velocities of $\mathrm{H}_2$ at $50 \mathrm{~K}$ and $\mathrm{O}_2$ at $800 \mathrm{~K}$ is
ChemistryStates of MatterAP EAMCETAP EAMCET 2019 (20 Apr Shift 2)
Options:
  • A 4 : 1
  • B 2 : 1
  • C 1 : 1
  • D 1 : 4
Solution:
2099 Upvotes Verified Answer
The correct answer is: 1 : 1
Root mean square speed $=\sqrt{\frac{3 R T}{M}}$

Given,
$$
\begin{aligned}
M_1 & =\text { molar mass of } \mathrm{H}_2=2 \\
M_2 & =\text { molar mass of } \mathrm{O}_2=32 \\
T_1 & =50 \mathrm{~K}, T_2=800 \mathrm{~K}
\end{aligned}
$$

On taking ratio of $r_1$ and $r_2$, we get
$$
\begin{aligned}
& \frac{r_1}{r_2}=\sqrt{\frac{M_2 \times T_1}{M_1 \times T_2}}=\sqrt{\frac{32}{2}} \times \sqrt{\frac{T_1}{T_2}} \\
& \frac{r_1}{r_2}=\sqrt{16} \times \sqrt{\frac{50}{800}} \text { or } \frac{r_1}{r_2}=4 \times \frac{1}{4}
\end{aligned}
$$
or
$$
\frac{r_1}{r_2}=\frac{1}{1}=1: 1
$$

Hence, option (c) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.