Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The ratio of energy required to raise a satellite to a height ' $h$ ' above the earth's surface to that required to put it into the orbit at the same height is ( $\mathrm{R}=$ radius of earth)
PhysicsGravitationMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $\frac{2 \mathrm{~h}}{\mathrm{R}}$
  • B $\frac{\mathrm{h}}{\mathrm{R}}$
  • C $\frac{\mathrm{R}}{\mathrm{h}}$
  • D $\frac{\mathrm{R}}{2 \mathrm{~h}}$
Solution:
1242 Upvotes Verified Answer
The correct answer is: $\frac{2 \mathrm{~h}}{\mathrm{R}}$
The formula for the energy required to raise a satellite to height $\mathrm{h}$ is
$\mathrm{E}_1=\Delta \mathrm{U}=\frac{\mathrm{mgh}}{1+\frac{\mathrm{h}}{\mathrm{R}}}=\frac{\mathrm{mghR}}{\mathrm{R}+\mathrm{h}}$
The formula for the energy required to set the satellite in orbit is
$\mathrm{E}_2=\frac{-\mathrm{GMm}}{2(\mathrm{R}+\mathrm{h})}+\frac{\mathrm{GMm}}{\mathrm{R}}$
$=\operatorname{mgR}\left[1-\frac{1}{2\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)}\right]\left(\because \mathrm{GM}=\mathrm{gR}^2\right)$
$\begin{aligned} \therefore \quad E_2 & =\frac{m g R\left(\frac{2 h}{R}+1\right)}{2\left(1+\frac{h}{R}\right)} \\ \therefore \quad \frac{E_1}{E_2} & =\frac{m g h}{1+\frac{h}{R}} \times \frac{2\left(1+\frac{h}{R}\right)}{m g R} \\ & =\frac{2 h}{R} \quad\left(\because h \ll R \Rightarrow 1+\frac{2 h}{R} \approx 0\right)\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.