Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The real part of \( (1-\cos \theta+i \sin \theta)^{-1} \) is
MathematicsComplex NumberKCETKCET 2016
Options:
  • A \( \frac{1}{2} \)
  • B (1) \( \frac{1}{1+\cos \theta} \)
  • C \( \tan \frac{\theta}{2} \)
  • D \( \odot \cot \frac{\theta}{2} \)
Solution:
1127 Upvotes Verified Answer
The correct answer is: \( \frac{1}{2} \)
Given that,
\[
\begin{aligned}
(1-\cos \theta+i \sin \theta)^{-1}=\frac{1}{1-\cos \theta+i \sin \theta} \\
=\frac{1}{2 \sin ^{2} \frac{\theta}{2}+i\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)} \\
=\frac{1}{2 \sin \frac{\theta}{2}} \times \frac{1}{\sin \frac{\theta}{2}+i \cos \frac{\theta}{2}} \\
=\frac{1}{2 \sin \frac{\theta}{2}} \times \frac{\theta}{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}} \\
=\frac{\sin \frac{\theta}{2}-i \cos \frac{\theta}{2}}{2 \sin \frac{\theta}{2}} \\
=\frac{1}{2}-i\left(\frac{1}{2} \cot \frac{\theta}{2}\right)
\end{aligned}
\]
So, real part of the complex number is \( \frac{1}{2} \)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.