Search any question & find its solution
Question:
Answered & Verified by Expert
The remainder when the polynomial $1+x^{2}+x^{4}+x^{6}+\ldots+x^{22}$ is divided by $1+x+x^{2}+x^{3}+\ldots .+x^{11}$ is -
Options:
Solution:
1671 Upvotes
Verified Answer
The correct answer is:
$2\left(1+x^{2}+x^{4}+\ldots+x^{10}\right)$
$$
\begin{array}{l}
P(x)=1+x^{2}+x^{4}+x^{6}+\ldots \ldots+x^{22}=\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{4}+x^{8}\right)\left(1-x^{4}+x^{8}\right) \\
Q(x)=1+x+x^{2}+x^{3}+\ldots \ldots+x^{11}=(1+x)\left(1+x^{2}\right)\left(1+x^{4}+x^{8}\right) \\
\frac{P(x)}{Q(x)}=\frac{\left(1+x^{4}\right)\left(1-x^{4}+x^{8}\right)}{(1+x)}=\frac{1-x^{4}+x^{8}+x^{4}-x^{8}+x^{12}}{1+x}=\frac{1+x^{12}}{1+x}
\end{array}
$$
Remainder. When $\left(1+x^{12}\right)$ is divided by $(1+x)$ is $=2$
Now remainder $\left.\mathrm{P}_{\Delta} \mathrm{x}\right)$ divided by $\mathrm{Q}(\mathrm{x})$
$$
\begin{array}{l}
=2\left(1+x^{2}\right)\left(1+x^{4}+x^{8}\right) \\
=2\left(1+x^{2}+\ldots \ldots+x^{10}\right)
\end{array}
$$
\begin{array}{l}
P(x)=1+x^{2}+x^{4}+x^{6}+\ldots \ldots+x^{22}=\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{4}+x^{8}\right)\left(1-x^{4}+x^{8}\right) \\
Q(x)=1+x+x^{2}+x^{3}+\ldots \ldots+x^{11}=(1+x)\left(1+x^{2}\right)\left(1+x^{4}+x^{8}\right) \\
\frac{P(x)}{Q(x)}=\frac{\left(1+x^{4}\right)\left(1-x^{4}+x^{8}\right)}{(1+x)}=\frac{1-x^{4}+x^{8}+x^{4}-x^{8}+x^{12}}{1+x}=\frac{1+x^{12}}{1+x}
\end{array}
$$
Remainder. When $\left(1+x^{12}\right)$ is divided by $(1+x)$ is $=2$
Now remainder $\left.\mathrm{P}_{\Delta} \mathrm{x}\right)$ divided by $\mathrm{Q}(\mathrm{x})$
$$
\begin{array}{l}
=2\left(1+x^{2}\right)\left(1+x^{4}+x^{8}\right) \\
=2\left(1+x^{2}+\ldots \ldots+x^{10}\right)
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.