Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The roots of the equation $(x-1)^5=32(x+1)^5$ are
MathematicsComplex NumberTS EAMCETTS EAMCET 2020 (14 Sep Shift 1)
Options:
  • A $\frac{1+2 e^{\frac{2 k \pi i}{5}}}{1-2 e^{\frac{2 k \pi i}{5}}}, k=1,2,3,4,5$
  • B $\frac{1-2 e^{\frac{2 k \pi i}{5}}}{1+2 e^{\frac{2 k \pi i}{5}}}, k=0,1,2,3,4$
  • C $1,2 \omega, 3 \omega^2, 2 \omega+3 \omega^2, 5 \omega^2+7$
  • D $\frac{3+2 e^{\frac{2(k+1) \pi i}{5}}}{3-2 e^{\frac{2(k+1) \pi i}{5}}}, k=0,1,2,3,4$
Solution:
2921 Upvotes Verified Answer
The correct answer is: $\frac{1+2 e^{\frac{2 k \pi i}{5}}}{1-2 e^{\frac{2 k \pi i}{5}}}, k=1,2,3,4,5$
We have, $(x-1)^5=32(x+1)^5$
$\Rightarrow\left(\frac{x-1}{x+1}\right)^5=32 \Rightarrow \frac{x-1}{x+1}=(32)^{1 / 5} \Rightarrow \frac{x-1}{x+1}=2 e^{\frac{2 k \pi i}{5}}$
Apply componendo and dividendo
$\frac{2}{2 x}=\frac{1-2 e^{\frac{2 k \pi i}{5}}}{1+2 e^{\frac{2 k \pi i}{5}}} \Rightarrow x=\frac{1+2 e^{\frac{2 k \pi i}{5}}}{1-2 e^{\frac{2 k \pi i}{5}}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.