Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The shaded part of the given figure indicates the feasible region. Then the constraints are

MathematicsLinear ProgrammingMHT CETMHT CET 2021 (20 Sep Shift 1)
Options:
  • A $\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3$
  • B $x, y \geq 0 ; x-y \geq 0 ; x \leq 5 ; y \geq 3$
  • C $\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}+\mathrm{y} \geq 0 ; \mathrm{x} \geq 5 ; \mathrm{y} \leq 3$
  • D $x, y \geq 0 ; x-y \geq 0 ; x \geq 5 ; y \leq 3$
Solution:
2806 Upvotes Verified Answer
The correct answer is: $\mathrm{x}, \mathrm{y} \geq 0 ; \mathrm{x}-\mathrm{y} \geq 0 ; \mathrm{x} \leq 5 ; \mathrm{y} \leq 3$
Here equation of line $\mathrm{OC}$ is $\mathrm{y}=\mathrm{x}$ i.e. $\mathrm{x}-\mathrm{y}=0$ and equation of line $\mathrm{AB}$ is $\mathrm{x}=5$ i.e. $\mathrm{x}-5=0$
Equation of line $\mathrm{BC}$ is $\mathrm{y}=3$ i.e. $\mathrm{y}-3=0$
Hence constraints for the shaded region are $x, y \geq 0, x-5 \leq 0, x$
$$
\begin{aligned}
& -y \geq 0, y-\leq 0 \\
& \text { i.e. } x, y \geq 0, x \leq 5, x-y \geq 0, y \leq 3
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.