Search any question & find its solution
Question:
Answered & Verified by Expert
The sides $a, b, c$ of a triangle are in AP. If $\cos \alpha=\frac{a}{b+c}, \cos \beta=\frac{b}{c+a}, \cos \gamma=\frac{c}{a+b}$ then $\tan ^{2} \frac{\alpha}{2}+\tan ^{2} \frac{\gamma}{2}=$
Options:
Solution:
1934 Upvotes
Verified Answer
The correct answer is:
$\frac{2}{3}$
$\frac{\cos \alpha}{1}=\frac{a}{b+c} \Rightarrow \frac{1}{\cos \alpha}=\frac{b+c}{a}$
By componendo and dividendo,we have
$\frac{1-\cos \alpha}{1+\cos \alpha}=\frac{b+c-a}{b+c+a}$
$\Rightarrow \quad \tan ^{2} \frac{\alpha}{2}=\frac{b+c-a}{3 b}\left\{\begin{array}{l}\because a, b, c \text { are in A.P. } \\ \Rightarrow 2 b=a+c\end{array}\right\}$
$\Rightarrow \quad \frac{1-\cos \gamma}{1+\cos \gamma}=\frac{a+b-c}{a+b-c}$
$\Rightarrow \quad \tan ^{2} \frac{\gamma}{2}=\frac{a+b-c}{3 b}$
$\therefore \tan ^{2} \frac{\alpha}{2}+\tan ^{2} \frac{\gamma}{2}=\frac{2 b}{3 b}=\frac{2}{3}$
By componendo and dividendo,we have
$\frac{1-\cos \alpha}{1+\cos \alpha}=\frac{b+c-a}{b+c+a}$
$\Rightarrow \quad \tan ^{2} \frac{\alpha}{2}=\frac{b+c-a}{3 b}\left\{\begin{array}{l}\because a, b, c \text { are in A.P. } \\ \Rightarrow 2 b=a+c\end{array}\right\}$
$\Rightarrow \quad \frac{1-\cos \gamma}{1+\cos \gamma}=\frac{a+b-c}{a+b-c}$
$\Rightarrow \quad \tan ^{2} \frac{\gamma}{2}=\frac{a+b-c}{3 b}$
$\therefore \tan ^{2} \frac{\alpha}{2}+\tan ^{2} \frac{\gamma}{2}=\frac{2 b}{3 b}=\frac{2}{3}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.