Search any question & find its solution
Question:
Answered & Verified by Expert
The solution of $\mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)}$ is
Options:
Solution:
2846 Upvotes
Verified Answer
The correct answer is:
$\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
$\begin{array}{ll} & \mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)} \\ \therefore \quad & \mathrm{e}^y \frac{(1+y \log y)}{y} \mathrm{~d} y=\mathrm{e}^x(\sin x+\cos x) \mathrm{d} x \\ \therefore \quad & \int \mathrm{e}^y\left(\log y+\frac{1}{y}\right) \mathrm{d} y=\int \mathrm{e}^x(\sin x+\cos x) \mathrm{d} x \\ & \Rightarrow \mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c} \\ & \ldots\left[\because \int \mathrm{e}^x\left(\mathrm{f}(x)+\mathrm{f}^{\prime}(x)\right) \mathrm{d} x=\mathrm{e}^x \mathrm{f}(x)+\mathrm{c}\right]\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.