Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The solution of $\mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)}$ is
MathematicsDifferential EquationsMHT CETMHT CET 2023 (12 May Shift 2)
Options:
  • A $\frac{\mathrm{e}^y}{y}=\mathrm{e}^x \sin x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
  • B $\mathrm{e}^y \log y=\mathrm{e}^x \cos x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
  • C $\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
  • D $\mathrm{e}^y y=\mathrm{e}^x \sin x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
Solution:
2846 Upvotes Verified Answer
The correct answer is: $\mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c}$, where $\mathrm{c}$ is a constant of integration.
$\begin{array}{ll} & \mathrm{e}^{y-x} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(\sin x+\cos x)}{(1+y \log y)} \\ \therefore \quad & \mathrm{e}^y \frac{(1+y \log y)}{y} \mathrm{~d} y=\mathrm{e}^x(\sin x+\cos x) \mathrm{d} x \\ \therefore \quad & \int \mathrm{e}^y\left(\log y+\frac{1}{y}\right) \mathrm{d} y=\int \mathrm{e}^x(\sin x+\cos x) \mathrm{d} x \\ & \Rightarrow \mathrm{e}^y \log y=\mathrm{e}^x \sin x+\mathrm{c} \\ & \ldots\left[\because \int \mathrm{e}^x\left(\mathrm{f}(x)+\mathrm{f}^{\prime}(x)\right) \mathrm{d} x=\mathrm{e}^x \mathrm{f}(x)+\mathrm{c}\right]\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.