Search any question & find its solution
Question:
Answered & Verified by Expert
The solution of $\sin x=-\frac{\sqrt{3}}{2}$ is
Options:
Solution:
2360 Upvotes
Verified Answer
The correct answer is:
$x=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{4 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
We have, $\sin x=-\frac{\sqrt{3}}{2}=-\sin \frac{\pi}{3}$
Hence, $\sin x=\sin \frac{4 \pi}{3}$, which gives $\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{4 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Hence, $\sin x=\sin \frac{4 \pi}{3}$, which gives $\mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{4 \pi}{3}$, where $\mathrm{n} \in \mathrm{Z}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.