Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The solution of the differential equation $\left(3 x y+y^2\right) d x+\left(x^2+x y\right) d y=0$ is
MathematicsDifferential EquationsJEE Main
Options:
  • A $x^2\left(2 x y+y^2\right)=c^2$
  • B $x^2\left(2 x y-y^2\right)=c^2$
  • C $x^2\left(y^2-2 x y\right)=c^2$
  • D None of these
Solution:
1888 Upvotes Verified Answer
The correct answer is: $x^2\left(2 x y+y^2\right)=c^2$
It can be written in the form of homogeneous equation $\frac{d y}{d x}=-\frac{3 x y+y^2}{x^2+x y}$
So, now put $y=v x$ and $\frac{d y}{d x}-v+x \frac{d v}{d x}$, we get
$\begin{aligned} & \quad v+x \frac{d v}{d x}=-\frac{3 x^2 v+x^2 v^2}{x^2+x^2 v} \Rightarrow x \frac{d v}{d x}=\frac{-2 v(v+2)}{v+1} \\ & \Rightarrow \quad \frac{1}{x} d x=-\frac{v+1}{2 v(v+2)} d v=-\left[\frac{1}{2(v+2)}+\frac{1}{2 v(v+2)}\right] d v \\ & \Rightarrow \quad-\frac{2}{x} d x=\left[\frac{1}{v+2}+\frac{1}{2 v}-\frac{1}{2 v(v+2)}\right]\end{aligned}$
On integrating, we get
$\begin{aligned} & -2 \log _e x=\frac{1}{2} \log (v+2)+\frac{1}{2} \log v+\log c \\ & \Rightarrow v(v+2) x^4=c^2 \Rightarrow \frac{y}{x}\left(\frac{y}{x}+2\right) x^4=c^2 \quad\left(v v=\frac{y}{x}\right)\end{aligned}$
Hence required solution is $\left(y^2+2 x y\right) x^2=c^2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.