Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The solution of the differential equation $\frac{d y}{d x}=\sec x(\sec x+\tan x)$ is
MathematicsDifferential EquationsJEE Main
Options:
  • A $y=\sec x+\tan x+c$
  • B $y=\sec x+\cot x+c$
  • C $y=\sec x-\tan x+c$
  • D None of these
Solution:
1294 Upvotes Verified Answer
The correct answer is: $y=\sec x+\tan x+c$
$\frac{d y}{d x}=\sec x(\sec x+\tan x) \Rightarrow \frac{d y}{d x}=\sec ^2 x+\sec x \tan x$
Now integrating both sides, we get $y=\tan x+\sec x+c$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.