Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The solution of the differential equation

$(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}$ is
MathematicsDifferential EquationsBITSATBITSAT 2020
Options:
  • A $y=(x+1) e^{3 x}+c$
  • B $3 y=(x+1)+e^{3 x}+c$
  • C $\frac{3 y}{x+1}=e^{3 x}+c$
  • D $y e^{-3 x}=3(x+1)+c$
Solution:
1091 Upvotes Verified Answer
The correct answer is: $\frac{3 y}{x+1}=e^{3 x}+c$
The given equation is $\frac{d y}{d x}-\frac{y}{x+1}=e^{3 x}(x+1)$

I.F. $=e^{\int-\frac{1}{x+1} d x}=e^{-\log (x+1)}=\frac{1}{x+1}$

The solution is

$y\left(\frac{1}{x+1}\right)=\int e^{3 x}(x+1) \cdot \frac{1}{x+1} d x+a$

$\Rightarrow \frac{y}{x+1}=\int e^{3 x} d x+a=\frac{e^{3 x}}{3}+a$

$\Rightarrow \frac{3 y}{x+1}=e^{3 x}+c, c=3 a$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.