Search any question & find its solution
Question:
Answered & Verified by Expert
The solution of the differential equation $\left(x^2+y^2\right) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$, is :
Options:
Solution:
2300 Upvotes
Verified Answer
The correct answer is:
$\left|x^2-4 y^2\right|^5=x^2$
$\begin{aligned}
& \left(x^2+y^2\right) d x=5 x y d y \\
& \Rightarrow \frac{d y}{d x}=\frac{x^2+y^2}{5 x y}
\end{aligned}$
Put $y=V x$
$\begin{aligned}
& \Rightarrow \mathrm{V}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+\mathrm{V}^2}{5 \mathrm{~V}} \\
& \Rightarrow \frac{\mathrm{xdv}}{\mathrm{dx}}=\frac{1-4 \mathrm{~V}^2}{5 \mathrm{~V}} \\
& \Rightarrow \int \frac{\mathrm{V}}{1-4 \mathrm{~V}^2} \mathrm{dV}=\int \frac{\mathrm{dx}}{5 \mathrm{x}}
\end{aligned}$
Let $1-4 \mathrm{~V}^2=\mathrm{t}$
$\Rightarrow-8 \mathrm{~V} \mathrm{dV}=\mathrm{dt}$
$\begin{aligned} & \Rightarrow \int \frac{\mathrm{dt}}{(-8)(\mathrm{t})}=\int \frac{\mathrm{dx}}{5 \mathrm{x}} \\ & \Rightarrow \frac{-1}{8} \ln |\mathrm{t}|=\frac{1}{5} \ln |\mathrm{x}|+\ln \mathrm{C} \\ & \Rightarrow-5 \ln |\mathrm{t}|=8 \ln |\mathrm{x}|+\ln \mathrm{K} \\ & \Rightarrow \ln \mathrm{x}^8+\ln \left|\mathrm{t}^5\right|+\ln \mathrm{K}=0 \\ & \Rightarrow \mathrm{x}^8\left|\mathrm{t}^5\right|=\mathrm{C} \\ & \Rightarrow \mathrm{x}^8\left|1-4 \mathrm{~V}^2\right|^5=\mathrm{C} \\ & \Rightarrow \mathrm{x}^8\left|\frac{\mathrm{x}^2-4 \mathrm{y}^2}{\mathrm{x}^2}\right|^5=\mathrm{C} \\ & \Rightarrow\left|\mathrm{x}^2-4 \mathrm{y}^2\right|^5=\mathrm{Cx} \mathrm{x}^2 \\ & \text { given } \mathrm{y}(1)=0 \\ & \Rightarrow|1|^5=\mathrm{C} \Rightarrow \mathrm{C}=1 \\ & \Rightarrow\left|\mathrm{x}^2-4 \mathrm{y}^2\right|^5=\mathrm{x}^2\end{aligned}$
& \left(x^2+y^2\right) d x=5 x y d y \\
& \Rightarrow \frac{d y}{d x}=\frac{x^2+y^2}{5 x y}
\end{aligned}$
Put $y=V x$
$\begin{aligned}
& \Rightarrow \mathrm{V}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1+\mathrm{V}^2}{5 \mathrm{~V}} \\
& \Rightarrow \frac{\mathrm{xdv}}{\mathrm{dx}}=\frac{1-4 \mathrm{~V}^2}{5 \mathrm{~V}} \\
& \Rightarrow \int \frac{\mathrm{V}}{1-4 \mathrm{~V}^2} \mathrm{dV}=\int \frac{\mathrm{dx}}{5 \mathrm{x}}
\end{aligned}$
Let $1-4 \mathrm{~V}^2=\mathrm{t}$
$\Rightarrow-8 \mathrm{~V} \mathrm{dV}=\mathrm{dt}$
$\begin{aligned} & \Rightarrow \int \frac{\mathrm{dt}}{(-8)(\mathrm{t})}=\int \frac{\mathrm{dx}}{5 \mathrm{x}} \\ & \Rightarrow \frac{-1}{8} \ln |\mathrm{t}|=\frac{1}{5} \ln |\mathrm{x}|+\ln \mathrm{C} \\ & \Rightarrow-5 \ln |\mathrm{t}|=8 \ln |\mathrm{x}|+\ln \mathrm{K} \\ & \Rightarrow \ln \mathrm{x}^8+\ln \left|\mathrm{t}^5\right|+\ln \mathrm{K}=0 \\ & \Rightarrow \mathrm{x}^8\left|\mathrm{t}^5\right|=\mathrm{C} \\ & \Rightarrow \mathrm{x}^8\left|1-4 \mathrm{~V}^2\right|^5=\mathrm{C} \\ & \Rightarrow \mathrm{x}^8\left|\frac{\mathrm{x}^2-4 \mathrm{y}^2}{\mathrm{x}^2}\right|^5=\mathrm{C} \\ & \Rightarrow\left|\mathrm{x}^2-4 \mathrm{y}^2\right|^5=\mathrm{Cx} \mathrm{x}^2 \\ & \text { given } \mathrm{y}(1)=0 \\ & \Rightarrow|1|^5=\mathrm{C} \Rightarrow \mathrm{C}=1 \\ & \Rightarrow\left|\mathrm{x}^2-4 \mathrm{y}^2\right|^5=\mathrm{x}^2\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.