Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The solution of $(x+y+1) \frac{d y}{d x}=1$ is
MathematicsDifferential EquationsTS EAMCETTS EAMCET 2007
Options:
  • A $y=(x+2)+c e^x$
  • B $x=-(y+2)+c e^y$
  • C $x=-(y+2)+c e^y$
  • D $x=(y+2)^2+c e^y$
Solution:
2996 Upvotes Verified Answer
The correct answer is: $x=-(y+2)+c e^y$
Given, $(x+y+1) \frac{d y}{d x}=1$
$\Rightarrow \quad \frac{d x}{d y}=x+y+1$
$\Rightarrow \quad \frac{d x}{d y}-x=y+1$, which is linear.
$\begin{aligned} & \therefore \quad \text { IF }=e^{\int-1 d y}=e^{-y} \\ & \therefore \text { Solution is } x \cdot e^{-y}=\int(y+1) e^{-y} d y \\ & \Rightarrow x e^{-y}=\int\left(y e^{-y}+e^{-y}\right) d y+c \\ & \Rightarrow x e^{-y}=-y e^{-y}+\int 1 \cdot e^{-y} d y+e^{-y} \cdot(-1)+c \\ & \Rightarrow x e^{-y}=-y e^{-y}-e^{-y}-e^{-y}+c \\ & \Rightarrow x e^{-y}=-(y+2) e^{-y}+c \\ & \Rightarrow \quad x=-(y+2)+c e^y\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.