Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The tangent of the angle between the curves $x y=1$ and $x^2+8 y=0$, is
MathematicsApplication of DerivativesTS EAMCETTS EAMCET 2019 (03 May Shift 1)
Options:
  • A $\frac{1}{7}$
  • B $\frac{2}{7}$
  • C $\frac{6}{7}$
  • D $\frac{3}{7}$
Solution:
1932 Upvotes Verified Answer
The correct answer is: $\frac{6}{7}$
We have,
$$
x y=1
$$
and $x^2+8 y=0$
On solving Eqs. (i) and (ii), we get
$$
x=-2, y=-\frac{1}{2}
$$
Now, $x y=1$
$$
\Rightarrow \frac{d y}{d x}=-\frac{y}{x} \Rightarrow\left(\frac{d y}{d x}\right)_{\left(-2, \frac{-1}{2}\right)}=-\frac{1}{4}=m_1
$$
and $x^2+8 y=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{4}$
$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{d y}{d x}\right)_{\left(-2,-\frac{1}{2}\right)}=\frac{1}{2}=m_2 \\
& \tan \theta=\left|\frac{m_1-m_2}{1+m_1 m_2}\right| \Rightarrow \tan \theta=\left|\frac{-\frac{1}{4}-\frac{1}{2}}{1-\frac{1}{8}}\right| \\
& \therefore \tan \theta=\frac{6}{7}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.