Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
The trigonometric equation $\sin ^{-1} x=2 \sin ^{-1} 2 a$ has a real solution, if
MathematicsTrigonometric EquationsWBJEEWBJEE 2015
Options:
  • A $|a|>\frac{1}{\sqrt{2}}$
  • B $\frac{1}{2 \sqrt{2}} < |a| < \frac{1}{\sqrt{2}}$
  • C $|a|>\frac{1}{2 \sqrt{2}}$
  • D $|a| \leq \frac{1}{2 \sqrt{2}}$
Solution:
2815 Upvotes Verified Answer
The correct answer is: $|a| \leq \frac{1}{2 \sqrt{2}}$
We know that, $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}$
$\Rightarrow \frac{-\pi}{2} \leq 2 \sin ^{-1} 2 a \leq \frac{\pi}{2}$
$\Rightarrow \frac{-\pi}{4} \leq \sin ^{-1} 2 a \leq \frac{\pi}{4}$
$\Rightarrow \sin \left(\frac{-\pi}{4}\right) \leq 2 a \leq \sin \left(\frac{\pi}{4}\right)$
$\Rightarrow \frac{-1}{\sqrt{2}} \leq 2 a \leq \frac{1}{\sqrt{2}}$
$\Rightarrow \frac{-1}{2 \sqrt{2}} \leq a \leq \frac{1}{2 \sqrt{2}} \Rightarrow|a| \leq \frac{1}{2 \sqrt{2}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.